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Abstract. The critical behaviour of the two-dimensional self-avoiding loop gas model with 
multiplicity m = 1 (singly counted non-intersecting loops) is studied numerically on a 
square lattice using a recently developed Monte Carlo method. The critical exponents m, 
& y and 8 are evaluated in the 'critical window' between the finite-size rounding and the 
non-critical ('correction-to-scaling') regime using a recently calculated accurate value of 
T,. Within error bars, Ising-like critical exponents of the loop gas are obtained. 

1. Introduction 

Recently [3], a statistical model of non-intersecting loops (loop gas (LG) model) was 
proposed to study the influence of the excluded-volume repulsion on the critical 
equilibrium properties of statistical line systems. The LG model is useful in describing 
various physical systems (such as the defect-line-mediated smectic A-nematic transition 
[3], the equilibrium polymerisation of sulphur [4] and the roughening phenomenon 
of solid surfaces [7]). The model is defined by the grand canonical partition function 

(1) Z = e x p ( - P F ) = C  m"L(') exP( -PU c))  
C 

where the sum extends over all configurations c of n L ( c )  self-avoiding and mutually 
self-avoiding (SAW) loops on a given domain L2 of a two-dimensional square lattice. 
F is the free energy of the system. The configurational energy is proportional to the 
total length I ( c )  of all loops and P is proportional to the inverse temperature 

P = & / k , T  (2) 

where E is the energy of a single link. The chemical potential of the loops is given by 

p = kTlog m (2') 

where m is the loop multiplicity. The model describes various physical systems. For 
example, m = 0 defines the one-loop (i.e. the dilute-polymer) problem, m = 1 describes 
thermally equilibrated polymer rings, as occurring, for example, in the equilibrium 
polymerisation problem of sulphur [4], m = 2 describes polar (i.e. oriented) loops, as 
occurring, for example, in a defect-line-mediated smectic A-nematic phase transition 
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of liquid crystals [3], and m 2 2 describes a generalised roughening problem [7]. 
Moreover, an analogous model is considered in the lattice theory of fermions [9]. 

In the present paper we show numerically the equivalence of the multiplicity 
m = 1 LG and the Ising model on a square lattice ( d  = 2). 

The Ising model on the square lattice is defined, for instance, by its low temperature 
expansion graphs [5] (and, by the Kramers-Wannier duality [6], its equivalent high 
temperature expansion graphs). Typically, any component of the Ising partition 
function expansion graph is defined by a set of bonds connecting the nearest-neighbour 
lattice sites once at most and ending in a lattice point in pairs or quadruplets. Thus, 
the bond coordination number at any site is c = 0 , 2  or 4; no open lines are allowed. 
In contrast, for the LG model, no bond crossings are allowed: c Z 4 .  This difference 
between the LG and the Ising model graphs has three consequences: (i)  the Kramers- 
Wannier duality is destroyed on passing from the Ising to the LG model, (ii) a so-called 
‘disorder point’ appears in the high temperature phase of the LG model, as shown in 
[ 8 ] ,  and (iii) the shift of the critical temperature to higher values is given by Tfsing= 
1.135, TkG= 1.157 (in units of &/kg). However, from our results, no modification of 
the critical behaviour occurs. 

We use a convenient Monte Carlo (MC) computation technique described recently 
in [ 1,9]. A Monte Carlo step can modify a configuration of loops in a plaquette by 
replacing empty bonds by occupied ones and vice versa, provided that the final 
configuration satisfies again the SAW property. This means, for instance, creating (or 
annihilating) an elementary loop of length 4, lengthening (or shortening) a loop by 
two bonds, or cutting one loop into two loops (or vice versa). The finite-size behaviour 
of the LG specific heat was analysed in various dimensions and for various multiplicities 
m [l]. Unfortunately, the extrapolation method does not yield a sufficiently precise 
value of the critical exponent CY and thus, in [ 11, it could not be decided, for example, 
whether or not the LG model for m = 1 is in the Ising universality class. In fact, for 
d = 2, m = 1 a rather large uncertainty of 0 s a s 0.4 and correspondingly, from the 
assumed hyperscaling relation, of U( = 1 -  CY/^), 0.8 s v s 1, was obtained. In the present 
paper, we use an accurate value of T, from a recent numerical study of the corresponding 
seven-vertex model [2] ( p ,  = 0.864* 0.001) obtained with a finite-size transfer matrix 
method (yielding, in addition, v = 1 rather accurately [2]). This result was, in fact, the 
first reliable numerical evidence for an Ising value of the LG exponents a and v. Using 
T, from reference [2], we are able to find a temperature regime within the critical 
region of the infinite-lattice LG, which is limited, close to T,, by the finite-size rounding 
temperature (where diverging thermodynamic quantities round off) on one side, and 
the end of the critical regime away from T, (where correction-to-scaling terms become 
important) on the other side. In this ‘critical window’ (whose extension increases with 
increasing system size) the critical exponents near T,, such as a, p and 7, are calculated 
from the slope of the linear portion of the corresponding quantity in a doubly 
logarithmic plot. Furthermore, the exponent 6 is determined from the isotherm at the 
critical temperature T, (of the infinite system). We find Ising-like values for all 
exponents considered. In addition, as a sharpening of the result a = 0 the specific heat 
is found to diverge logarithmically. Also, the critical amplitudes are determined and, 
as a result, we conclude that the loop gas model on a square lattice lies, for m = 1, in 
the Ising universality class. 

Thus, the introduction of the total self-avoidingness of the LG with m = 1 ( c  = 
0,2, c # 4; i.e. of the non-crossing property of closed lines) in addition to the at most 
single occupancy of bonds of Ising graphs does not alter the corresponding universality 
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Table 1. Summary of the results for the critical exponents (E) and critical amplitudes (A) 
of the investigated thermodynamic variables for the two-dimensional loop gas on a square 
lattice with L = 80 and the king model. Except for the order parameter, the extrapolated 
critical quantities of the LG on the infinite lattice lie within the error bars. 

Loop gas Ising 

Specific heat: T < T, E: a’=O 0 

Specific heat: T >  T, E: a=O 0 
A: a’ = 0.61 * 0.02 21 T = 0.637 

A: a=0.59*0.04 2/ T = 0.637 

A: B=1.17*0.01 
Order parameter: T < T, E: /3 =0.115*0.002 

Order parameter extrapolated (L = CO) E: #3, = 0.124 * 0.002 Q=0.125 

Susceptibility: T < T, E: y ‘ =  1.77*0.03 3 = 1.75 

Susceptibility: T >  T, E: y =  1.70*0.08 = 1.75 

Critical isotherm: T = T, E: S = 15.1 *0.2 15 

Derived exponents 

A: E,= 1.17*0.01 1.22 

A: C- = 0.024* 0.003 0.026 

A: C,=1.3*0.1 0.96 

A: D=1.06*0.01 1.06 

Correlation length: T <  T, E: Y’= 1 1 
Correlation length: T >  T, E: u = l  1 
Correlation function: T = T, E: 7 = 0.25 * 0.002 a = 0.25 

class. From the equivalence of the LG and the Ising model on the honeycomb lattice 
(where crossing lines ( c  = 4) cannot occur) and our result, further support is given to 
the general assertion that the critical exponents of lattice models of a given dimensional- 
ity are independent of the lattice structure. An analogous result in two dimensions 
has been reported some time ago [lo]. Using exact enumeration data the trail walk 
problem (in which each lattice bond is visited at most once) was shown to be numerically 
equivalent to the SAW (i.e. dilute polymer) problem. The extension of this equivalence 
to the corresponding loop problems leads to the m = 0 LG case. 

In 0 2, an analysis of the specific heat near T, is presented and in 0 3 the order 
parameter is defined for the LG and analysed together with its susceptibility. The 
critical isotherm is analysed in 0 4 and in 0 5 concluding remarks as well as a summary 
of our results for the critical exponents a, p, ‘y, 8, and amplitudes A,, B, C,,  D are 
presented in table 1. 

2. Specific heat 

The specific heat per site 

is studied near the critical point. From equations (1) and (2), it is related to the energy 
fluctuations by 

ckBT2/E2 = ( ( I  - (l))’)/L* = (Al)’/L2 (4) 
(fluctuation-dissipation theorem). 
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Monte Carlo data for A12/ L2 as a function of the temperature T are depicted in 
figure 1. Any value is calculated as an average over 1000 configurations each obtained 
after five complete sweeps through the lattice. In the same way, all other calculated 
quantities discussed below are obtained. 

The most singular part at T = T, defines the critical exponents a', a and amplitudes 
A below and above T,: 

For the case a = a' = 0, a logarithmic dependence on t is defined by 

A12/ L2 = a( ' )  log1 tl for T +  T:. ( 5 ' )  

A linear c against log1 tl plot (figure 2( a) )  shows that a logarithmic dependence, equation 
( 5 7 ,  is consistent with the Monte Carlo data, in contrast to a power law (figure 2 ( b ) ) .  

As a result, 

a' = 0.61 *0.02 a = 0.59 i 0.04. (5" )  a'= = 0 

Moreover, a shift of the low and high temperature curves of 

A C  = C( T,+ 8 )  - C( Tc- 6) (0 .32 f 0 . 0 7 ) ~ ~ / k B T *  ( 5"') 

for small finite S is observed. 
The deviation of the logarithmic dependence corresponding to equation (8) close 

to T, is caused by the finite-size effect. We have obtained for the square lattice loop 
gas with L = 10, 20, 40 and 80 and periodic boundary conditions approximately 

( 6 )  I TdCv - TcI/ T, = (0.9 * 0.06)/ L. 

0 7  1 0  1 3  1'6 
T 

Figure 1. Temperature dependence of the mean-square total loop length fluctuations 
( A l ) 2 / L 2  = ( ( l - ( l ) ) 2 ) / L 2  (i.e. kBT2 xspecific heat per site, (4)) of the LG on a square lattice 
with L = 80 with periodic boundary conditions, near the critical point. 
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A finite exponent a or a‘, equation ( 5 ) ,  would show up in a linear portion of the log 
c against logltl plot. As shown in figure 2 ( b ) ,  no linear dependence is observed. 

3. Order parameter and susceptibility 

An order parameter of the self-avoiding loop gas model can be defined from the close 
analogy to the Ising model in its line graph representation of the high temperature 
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expansion mentioned above. The Ising graphs can be viewed as closed lines (loops) 
with allowed crossings (i.e. with a crossing energy E,  = 0; in contrast, E ,  = CO for the 
loop gas model). The Ising order parameter, i.e. the magnetisation m, is defined by 
the statistical average (s) of the site-averaged spin s: 

In general, the loops separate regions of opposite spins s, = *l ,  and divide the whole 
lattice into an exterior ( u e x  with s, = + 1 )  and an interior ( U , ”  with s, = -1) part, 
respectively. Therefore 

s = ( ~ , x - - U , , ) / ( ~ , x + U , , ) .  

Z( h )  = exp( -p l (  c )  + hs) h=PH (7) 

Introducing a magnetic field H by 

c 

it follows that 

i a  
m=--In Z. 

N ah 
The response of the spins to an applied infinitesimally small external magnetic field 
H defines the susceptibility x 

1 am 
N aH x = -  - = p ( ( s - ( ~ ) ) ~ ) = p A m ~  ( 9 )  

again from the fluctuation-dissipation theorem. An analysis of m( T )  close to T, yields 

(8’) 

where p is the critical exponent of the magnetisation. In calculating (s) for finite 
systems at h = 0 and close to T,, and starting with (s) > 0, it occurs from time to time 
that ‘wrong’ magnetisation directions (s) < 0 contribute to the average value of m. 
Thus, l(s)/ underestimates the magnetisation value of the infinite lattice. For very large 
lattice sizes L, ‘wrong’ magnetisation directions occur very rarely even for long calcula- 
tion times T. Note that m = lim,+m limL+m (s) defines the magnetisation for the infinite 
system whereas for the opposite order of limits, 1imL-= lim,+m (s) (7, L )  = 0 at all 
temperatures. 

m = B (  T,- T ) ~  

We have analysed the quantities l(s)l and (Is[), for which, evidently 

I(s)l <(Isl) (10) 
holds. Numerically, equality holds for (10) everywhere except very close to and above 
the critical point T,. In figure 3, Monte Carlo results for the order parameter m are 
plotted against T To evaluate p we have plotted in figure 4 data from a 80 x 80 lattice 
in a log m against logltl graph. The linear fit has been achieved by statistically weighting 
the m values using the mean-square deviation of m which is proportional to x-’” 
(where x is the susceptibility): 

(l/xl’? (s). , ( W )  = 

We have obtained for an 80 x 80 lattice 

p =0.115*0.002 B =  1.17*0.01. 
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Figure4. Log-log plot of the order parameter, In m against In( - t )  for L = 80. The optimised 
linear fit yields pso= 0.115*0.002, B = 1.17r0.01 (equation (8")). Apparentlythe deviation 
of p from the expected Ising value is caused by finite-size effects. 

The finite-size effect is illustrated for L = 10,20,40 and 80 in figure 5. The ( L  = 00) 

extrapolated values for the exponent p and the amplitude B are 

p =0.124*0.002 B =  1.19i0.001 (8'") 

compatible with the Ising values p = 0.125 and B = 1.22. The Monte Carlo results for 
the susceptibility for the 80x80 lattice are shown in figure 6. A remarkable linear 
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Figure 5. Log-log plots of the order parameter In m against In( - t )  for L = 10, 20, 40 and 
80. An extrapolation of the p values for the lattice sizes L = 10,20, 40 and 80 gives 
p,=0.124*0.002 and E,= 1.19i.0.001. 

behaviour is obtained if In(Am2/ L2)  is plotted against In( T,/ T - 1) instead of In( T /  T, - 
l),  cf figure 7. A simple fit within the critical window yielded sufficiently accurate 
values for the exponents y, y'  and amplitudes C ,  defined by 

We have obtained 

y' = 1.77 f 0.03 C- = 0.024 * 0.003 

= 1.70*0.08 C+= 1.3k0.1. 

Again, the critical exponents coincide, within error limits, with the Ising values 
(rf, = yis = 1.75). Interestingly, the LT critical amplitude C- is equal to the Ising value 
C?ing whereas the HT value C, = 0.8 Cying. The deviation of the latter from the Ising 
value can be understood qualitatively in terms of the stronger effect of the non-crossing 
property of the LG at higher loop densities, i.e. on the HT side of T,. 
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Figure 6. Temperature dependence of the mean-square order parameter fluctuations Am2 
(9) of the LG on a square lattice with L = 80 with periodic boundary conditions. 
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4. Critical isotherm 

Using the definition of the magnetic field (7), the critical isotherm m(h,  T = T,) scales, 
for small values of lhl, as 

m = Dlhl”’. (12) 
To determine the critical exponent 6 and the amplitude 0, we have plotted log m 
against log Ihl at T = T, in figure 8. The linear regime within the ‘critical window’ is 
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Figure 8. Log-log plot of the critical isotherm m(h,  f = 0) for L = 80. The linear fit yields 
S = 1 5 . 1 * 0 . 2 ,  0=1.06*0.01. 

rather narrow. The analysis of a linear fit gives 

6 = 15.1 k0.2 D =  1.06*0.01. 

For the Ising model, 6 = 15, Dis = 1.06. 

5. Conclusions 

As the main result, the ZD Ising-like critical exponents have been established for the 
LG model with m = 1 on the square lattice, using the critical window method and an 
accurate value of T,. The critical amplitudes assume Ising-like values below T, but 
deviate slightly from the latter above T,. The numerical results are summarised in 
table 1 .  

Moreover, finite-size effects for the order parameter have been studied for the 
(linear) lattice sizes L = 10,20,40,80 and periodic boundary conditions. A confirma- 
tion and sharpening of the previous results has been obtained. 
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